Abstract
Growth hormone (GH) excess in acromegaly is associated with increased precancerous colon polyps and soft tissue adenomas, whereas short-stature humans harboring an inactivating GH receptor mutation do not develop cancer. We show that locally expressed colon GH is abundant in conditions predisposing to colon cancer and in colon adenocarcinoma-associated stromal fibroblasts. Administration of a GH receptor (GHR) blocker in acromegaly patients induced colon p53 and adenomatous polyposis coli (APC), reversing progrowth GH signals. p53 was also induced in skin fibroblasts derived from short-statured humans with mutant GHR. GH-deficient prophet of pituitary-specific positive transcription factor 1 (Prop1)(-/-) mice exhibited induced colon p53 levels, and cross-breeding them with Apc(min+/-) mice that normally develop intestinal and colon tumors resulted in GH-deficient double mutants with markedly decreased tumor number and size. We also demonstrate that GH suppresses p53 and reduces apoptosis in human colon cell lines as well as in induced human pluripotent stem cell-derived intestinal organoids, and confirm in vivo that GH suppresses colon mucosal p53/p21. GH excess leads to decreased colon cell phosphatase and tensin homolog deleted on chromosome 10 (PTEN), increased cell survival with down-regulated APC, nuclear β-catenin accumulation, and increased epithelial-mesenchymal transition factors and colon cell motility. We propose that GH is a molecular component of the "field change" milieu permissive for neoplastic colon growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.