Abstract

Laboratory study conducted using an in vitro wear simulator with a growth guidance system. Analysis of variance performed to compare in vitro specimens (n = 6) with in vivo retrieval components (n = 5). To characterize the stainless steel, wear debris potential of a spinal growth guidance system by developing an in vitro model and validating tested implants with retrospectively obtained retrievals. Growth enabling, surgical treatments have been developed to provide fusionless options for patients with early-onset scoliosis. There exist few data regarding the wear debris associated with such spinal systems. In this study, we determined in vitro wear from the stainless steel components of the SHILLA™ Growth Guidance System. An analogue lumbar spine model was adapted from ISO 12189:2008 to assess the growth guidance system. In a multistation wear simulator, 6 assembled constructs were tested under displacement control for 5 million cycles (Mc) with diluted bovine serum, and the wear was measured gravimetrically at end of the test. The components were compared quantitatively for wear scar depth with retrieved growth guidance implants (n = 5), and qualitatively for wear, corrosion, and other surface damage. The average total wear rate over 5 Mc was 0.39 ± 0.13 mm/Mc (3.12 ± 1.01 mg/Mc) with an average particle size of 1.3 μm in equivalent circular diameter. Prominent wear scars were noticed on both the tested and retrieved specimens with no statistical difference in the wear scar depths of the tested and retrieved components when set and multiaxial screws when compared collectively. An in vitro wear analysis for a spinal growth guidance system was conducted using a novel protocol and validated against retrieved implants. This is the first study establishing a baseline value for the wear of "growth enabling" devices for the treatment of early-onset scoliosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.