Abstract

An increase in nutrient solution concentration to produce high-quality fruit vegetables, such as tomatoes, may reduce growth and yield. One reason might be inhibition of photosynthesis, but results of photosynthesis studies in the literature are inconsistent. In this study, we investigated growth and photosynthesis of whole `Celebrity' and `Counter' tomato [Lycopersicon esculentum (L.) Mill.] plants in response to nutrient solution concentration, measured as electrical conductivity (EC). The effects of two levels of photosynthetic photon flux density (PPF = 400 or 625 μmol·m-2·s-1) on plant response to nutrient solution EC in a range between 1.25 to 8.75 dS·m-1 in a series of four experiments in gas exchange chambers placed in larger growth chambers were examined. Increasing PPF enhanced tomato growth and photosynthesis but increasing EC diminished them. Reduction of dry weight was 1.9% to 7.3%, while plant photosynthesis was reduced between 1.7% and 4.5% for each 1 dS·m-1. Increasing EC did not decrease dry matter content and leaf photosynthesis. Mean plant dry matter content ranged between 70 and 95 g·kg-1, and net leaf photosynthesis on the last measurement day was between 7.5 and 11.3 μmol·m-2·s-1, depending on experiment. The decrease in whole plant photosynthesis with an increase in EC was caused by decreased leaf area but not by a decrease in leaf photosynthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.