Abstract

We examine the properties of ultrathin TiN films grown by reactive dc magnetron sputtering on single-crystalline MgO(100) substrates at growth temperatures ranging from 30 to 650 °C. The resistance of the films is measured in-situ, during growth, to study the thickness at which the films coalesce and become structurally continuous. Both the in-situ resistance measurements and X-ray diffraction measurements show a clear transition from polycrystalline growth to epitaxial (100) growth well below typical TiN growth temperatures, or between 100 and 200 °C. The coalescence and continuity thicknesses are 1.09 ± 0.06 nm and 5.5 ± 0.5 nm, respectively, at room temperature but reach a minimum of 0.08 ± 0.02 nm and 0.7 ± 0.1 nm, respectively, at 600 °C. A large drop in resistivity is seen with increasing growth temperature and the resistivity reaches 16.6 μΩ cm at 600 °C. Achieving epitaxy at such a low temperature and a low continuity thickness is important in a variety of applications such as device interconnects and metal–oxide–semiconductor devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.