Abstract

Tantalum has been cited to have many biomaterial applications, exhibiting biocompatibility and outstanding corrosion resistance. Tantalum may be covered with tantalum oxide using the electrochemical process of anodic oxidation. The oxide surface is known to be bioactive and more corrosion resistant. In this research, compact tantalum oxide films were obtained by potentiostatic and potentiodynamic methods in H2SO4 and H3PO4 (1 mol.L-1) electrolytes. By XPS analysis the stoichiometry Ta2O5 was detected. The thermodynamic stability of those oxides was compared and the results indicated that Ta2O5 obtained in H2SO4 has higher thermodynamic stability than Ta2O5 obtained in H3PO4. The incorporation of (PO4)3- ions and the formation of a bilayer oxide are responsible for the reduced stability. Also, the better control of chemical kinetic of oxide formation allows potentiodynamic oxides to be more stable. Ta2O5 shows spontaneous dissolution in artificial blood, nevertheless, it remains stable even after 60 days of immersion. By scratching tests was possible to notice that Ta2O5 is highly adherent to the tantalum metallic substrate and by mechanical indentation was possible to measure a lower elastic modulus for the Ta2O5 than the metallic substrate, what can be considered as distinguished properties for biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.