Abstract

A group G is called a PC-group if the factor group G/CG(〈x〉G) is polycyclic for each element x of G. It is proved here that if G is a group of infinite rank whose proper subgroups of infinite rank have the property PC, then G itself is a PC-group, provided that G has an abelian non-trivial homomorphic image. Moreover, under the same assumption, a complete classification of minimal non-PC groups is obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.