Abstract
In this work, we present a novel embedded feature selection method based on a Multi-layer Perceptron (MLP) network and generalize it for group-feature or sensor selection problems, which can control the level of redundancy among the selected features or groups and it is computationally more efficient than the existing ones in the literature. Additionally, we have generalized the group lasso penalty for feature selection to encompass a mechanism for selecting valuable groups of features while simultaneously maintaining control over redundancy. We establish the monotonicity and convergence of the proposed algorithm, with a smoothed version of the penalty terms, under suitable assumptions. The effectiveness of the proposed method for both feature selection and group feature selection is validated through experimental results on various benchmark datasets. The performance of the proposed methods is compared with some state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.