Abstract

In order to solve complex practical problems, the model of deep learning can not be limited to models such as deep neural networks. To deepen the learning model, we must actively explore various depth models. Based on this, we propose a deep evolutionary algorithm, that is group competition cooperation optimization (GCCO) algorithm. Unlike the deep learning, in the GCCO algorithm, depth is mainly reflected in multi-step iterations, feature transformation, and models are complex enough. Firstly, the bio-group model is introduced to simulate the behavior that the animals hunt for the food. Secondly, according to the rules of mutual benefit and survival of the fittest in nature, the competition model and cooperation model are introduced. Furthermore, in the individual mobility strategy, the wanderers adopt stochastic movement strategy based on feature transformation to avoid local optimization. The followers adopt the variable step size region replication method to balance the convergence speed and optimization precision. Finally, the GCCO algorithm and the other three comparison algorithms are used to test the performance of the algorithm on ten optimization functions. At the same time, in the actual problem of setting up the Shanghai gas station the to improve the timely rate, GCCO algorithm achieves better performance than the other three algorithms. Moreover, Compared to the Global Search, the GCCO algorithm takes less time to achieve similar effects to the Global Search.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.