Abstract

Over-exploitation of groundwater for irrigation caused rapid groundwater depletion in north India, leading to food and water security challenges. However, the crucial role of changing cropping patterns on groundwater savings under the observed and projected warming climate remains unexplored. Here, we show that altering the existing rice-dominated cropping systems in India can be a potential solution for groundwater sustainability under the current and future climate. Satellite and model-based estimates show that north India lost ∼336 and 297 km3 of groundwater, respectively during 2002-2022. We developed optimized crop switching scenarios for groundwater savings considering nutritional requirements, farmers' profit, and crop production. Crop switching considering all the three targets (crop switch one: CSI) and allowing rice replacement with alternate crops (crop switch two: CSII) could save 45 and 91 km3 groundwater, respectively in north India during the observed climate (2002-2022) compared with the current cropping pattern. Altering the current cropping pattern can lead to substantial groundwater savings under the projected future climate without comprising nutritional targets and farmers' profit at the state level. Replacing 37% area of rice with other crops (CSII) can recover 61 to 108 km3 groundwater compared with -13 to 43 km3 with current cropping pattern under the 1.5-3 °C global warming levels. Similarly, under the CSI scenario, 36 to 86 km3 groundwater can be recovered in the future warming world. Moreover, the benefits of crop switching in groundwater saving are higher during the prolonged dry periods compared with the baseline under the warming climate. Therefore, crop switching offers substantial benefits for groundwater sustainability under the current and projected future climate in India.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.