Abstract

AbstractThis paper analyzes the groundwater flow system in an unconfined downward-sloping aquifer of semi-infinite extent in response to localized transient recharge. The aquifer is in contact with a water body of constant water level at one end and receives localized transient recharge from a recharge basin of finite width. The mathematical model is based on the Boussinesq equation with Dupuit-Forchheimer assumption, in which the spatial coordinate of the recharge basin is treated as an additional parameter. Analytical solutions of the linearized Boussinesq equation are obtained using the Laplace transform technique by dividing the aquifer in a three-zone system containing both Dirichlet and Neumann boundary conditions at the hypothetical interfaces. Upward- and zero-sloping cases are deduced from the main results by appropriately adjusting the slope parameter. To assess the validity and efficiency of the linearization method, the nonlinear Boussinesq equation is also solved using a fully explicit predic...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.