Abstract
A comprehensive study of a sandy aquifer of deltaic origin in southern Poland included water chemistry, isotopes, dissolved trace gases and transport modelling. Tritium, sulphur hexafluoride (SF6) and freons (F-11, F-12 and F-113) showed the presence of modern waters in the recharge areas and shallow confined parts of the aquifer. The presence of older Holocene waters farther from the recharge areas was indicated by lack of 3H, SF6 contents ≤0·02 fmol l−1 and relatively low 14C values. The discharge from the system is by upward seepage in the valley of a major river. Pre-Holocene waters of a cooler climate, identified on the basis of δ18O, δ2H, 14C, Ne and Ar data, were found in some distant wells. Concentrations of N2, Ne and Ar determined by gas chromatography were used for calculating the noble gas temperatures, air excess needed for correction of SF6, and nitrogen content released by denitrification process. The time series of 3H content available for some wells supplied quantitative information on age distributions and the total mean ages of flow through the unsaturated and saturated zones. The derived 3H age distributions turned out to be very wide, with mean values in the range of about 30 to 160 years. For each well with determined 3H age, the SF6 data showed either a lower age range or the possibility of a lower age as expected due to shorter travel times of SF6 through the unsaturated zone, which most probably also resulted in different types of age distributions of these tracers. Freons appeared to be of little use for individual age determinations. A quantitative estimation of two-component mixing from SF63H relations is not possible unless the travel time of 3H through the unsaturated zone is comparable to that of SF6. The ratio of integrals of the response function over the age range with tracer and the whole response function yields the ratio of water with tracer to total flow of water. That ratio is a tracer-dependent function of time. Transport modelling of SF6 tracer done with MT3D code yielded initially large discrepancies between calculated and measured tracer concentrations. Some discrepancies remained even after calibration of the transport model with SF6. Simulation of tritium contents with a calibrated transport model yielded reasonable agreement with measured contents in some wells and indicated a need for further investigations, particularly in the eastern part of the aquifer. The existence of distinct hydrochemical zones is consistent with the tracer data; young waters with measurable 3H and SF6 contents are aerobic and of HCO3Ca or HCO3SO4Ca types. Slightly elevated Na and Cl contents, as well as the highest concentrations of SO4 and NO3 within this zone are due to anthropogenic influences. Anaerobic conditions prevail in the far field, under the confining cover, where pre-bomb era Holocene waters dominate. In that zone, dissolved oxygen, NO3 and U contents are reduced, and Fe, Mn and NH4 contents increase. In the third zone, early Holocene and glacial waters occur. They are of HCO3CaNa or HCO3Na types, with TDS values higher than 1 g l−1 and Na content higher than 200 mg l−1, due to either small admixtures of ascending or diffusing older water or freshening of marine sediments, a process that is probably occurring till the present time. Copyright © 2005 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.