Abstract
Over the past two decades a significant number of layout analysis (page segmentation and region classification) approaches have been proposed in the literature. Each approach has been devised for and/or evaluated using (usually small) application-specific datasets. While the need for objective performance evaluation of layout analysis algorithms is evident, there does not exist a suitable dataset with ground truth that reflects the realities of everyday documents (widely varying layouts, complex entities, colour, noise etc.). The most significant impediment is the creation of accurate and flexible (in representation) ground truth, a task that is costly and must be carefully designed. This paper discusses the issues related to the design, representation and creation of ground truth in the context of a realistic dataset developed by the authors. The effectiveness of the ground truth discussed in this paper has been successfully shown in its use for two international page segmentation competitions (ICDAR2003 and ICDAR2005).KeywordsGround TruthDocument ImageText RegionDocument Type DefinitionConnected Component AnalysisThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.