Abstract

In this paper, we investigate the ground-state properties of a bosonic Tonks-Girardeau gas confined in a one-dimensional periodic potential. The single-particle reduced density matrix is computed numerically for systems up to $N=265$ bosons. Scaling analysis of the occupation number of the lowest orbital shows that there are no Bose-Einstein Condensation(BEC) for the periodically trapped TG gas in both commensurate and incommensurate cases. We find that, in the commensurate case, the scaling exponents of the occupation number of the lowest orbital, the amplitude of the lowest orbital and the zero-momentum peak height with the particle numbers are 0, -0.5 and 1, respectively, while in the incommensurate case, they are 0.5, -0.5 and 1.5, respectively. These exponents are related to each other in a universal relation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.