Abstract
AbstractThe ground‐state deprotection of a simple alkynylsilane is studied under vibrational strong coupling to the zero‐point fluctuations, or vacuum electromagnetic field, of a resonant IR microfluidic cavity. The reaction rate decreased by a factor of up to 5.5 when the Si−C vibrational stretching modes of the reactant were strongly coupled. The relative change in the reaction rate under strong coupling depends on the Rabi splitting energy. Product analysis by GC‐MS confirmed the kinetic results. Temperature dependence shows that the activation enthalpy and entropy change significantly, suggesting that the transition state is modified from an associative to a dissociative type. These findings show that vibrational strong coupling provides a powerful approach for modifying and controlling chemical landscapes and for understanding reaction mechanisms.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.