Abstract

The mining-induced ground response (MIGR) has a critical impact on safety management, the mining plan, and entry support. A clear understanding of the characteristics is the foundation of the MIGRs scientific control. This study is the result of the MIGRs development of the non-pillar mining panel with gob-side entry by roof cutting (GSERC). Comprehensive research of the in situ measurements, numerical simulation, and theoretical analysis to determine the ground response characteristics, including mining panel and GSERC, were implemented. The results indicate that the MIGR presents the characteristic of asymmetric development and that the ground response near the non-roof cutting side is more significant than that near the roof cutting side. The development stage of the entry convergence of GESRC can be divided into seven stages; the primary rapid development stage should be paid more attention to in the support process. The entry convergence rapidly increases to 275 mm, 380 mm, 410 mm, and 525 mm, respectively, for the roof cutting rib to the virgin coal rib, the roof near the virgin coal side, the roof of the middle section, and the roof near the cutting side. The hydraulic support end cycle resistance at the roof cutting side and the middle section of the mining panel with the value of more than 30.8 MPa is greater than that at the non-roof cutting side with the value of less than 26 MPa, which presents the asymmetric feature. The numerical simulation results regarding vertical stress development, vertical displacement, and horizontal displacement also presents the asymmetric feature. The MIGR division is divided into five divisions. Division II (the middle section of the panel) and division IV (the entry range near the roof cutting side) should be paid more attention to in the panel mining process. The results of this study can provide technical guidance and theoretical reference for similar engineering practices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.