Abstract

<p>The problem of predicting terrain deformation time series from radar interferometry (InSAR) data is one of the biggest current challenges for the prevention and mitigation of the impact of geological risks (e.g. earthquakes, volcanoes, subsidence, slope landslides) that affect both urban (e.g. building movement) and non-urban areas. Generating spatio-temporal alert systems on the processes of deformation of the terrain based on predictive models is one of the great current challenges in the face of the prevention and management of geological risks. Within machine learning techniques, deep learning offers the possibility of applying prediction models of deformation time series on images using convolutional neural networks (Ma et al., 2020).</p><p>The objective of the present study is to develop a methodology to obtain predictive models of time series of terrain deformation from InSAR images using machine learning algorithms (e.g. deep convolutional neural networks). Data to train the algorithm will be time series of terrain deformation contained in InSAR images processed by the Geological Survey of Spain (IGME-CSIC). Different architectures and parameterizations of machine learning will be tested.</p><p>This work is performed within the framework of the SARAI Project PID2020-116540RB-C22 funded by MCIN/ AEI /10.13039/501100011033.</p><p>Reference:</p><p>Ma, P., Zhang, F., Lin, H. (2020). Prediction of InSAR time-series deformation using deep convolutional neural networks. Remote Sensing Letters, 11:2, 137-145.</p><p> </p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.