Abstract

Leaf area index (LAI) is the total one-sided area of leaf tissue per unit ground surface area. It is a key parameter in ecophysiology, especially for scaling up the gas exchange from leaf to canopy level. It characterizes the canopy-atmosphere interface, where most of the energy fluxes exchange. It is also one of the most difficult to quantify properly, owing to large spatial and temporal variability. Many methods have been developed to quantify LAI from the ground and some of them are also suitable for describing other structural parameters of the canopy. This paper reviews the direct and indirect methods, the required instruments, their advantages, disadvantages and accuracy of the results. Analysis of the literature shows that most cross-validations between direct and indirect methods have pointed to a significant underestimation of LAI with the latter techniques, especially in forest stands. The two main causes for the discrepancy, clumping and contribution of stem and branches, are discussed and some recent theoretical or technical solutions are presented as potential improvements to reduce bias or discrepancies. The accuracy, sampling strategy and spatial validity of the LAI measurements have to be assessed for quality assurance of both the measurement and the modelling purposes of all the LAI-dependent ecophysiological and biophysical processes of canopies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.