Abstract
Measurements of gross NH4+ and NO3− production in forest soils were conducted using the 15N pool dilution method. Mineral topsoils (0–10 cm depth) were collected from four forests from northern to southern Japan with a natural climate gradient to elucidate the mechanisms regulating gross nitrification rates in forest soils. Additionally, we attempted to evaluate the relative importance of heterotrophic nitrification in gross total nitrification using acetylene as a specific inhibitor of autotrophic nitrification. Distinct differences were found among sites in the gross rates of NH4+ production (3.1–11.4 mg N kg−1 day−1) and gross total nitrification (0.0–6.1 mg N kg−1 day−1). The rates of gross heterotrophic nitrification were low in this study, indicating that heterotrophic nitrification is of minor importance in most forest mineral topsoils in Japan. Significant relations were found between gross autotrophic nitrification and gross NH4+ production, soil N, and soil C concentrations, but none was found between gross autotrophic nitrification and soil pH. We determined the critical value of the gross NH4+ production rates for gross autotrophic nitrification under which no gross autotrophic nitrification occurred, as well as the critical soil C/N ratio above which gross autotrophic nitrification ceased. Results show that tight coupling of production and consumption of NH4+ prevents autotrophic nitrifiers from utilizing NH4+ as long as NH4+ availability is low.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.