Abstract

Repair of UV-irradiated bacteriophage in Escherichia coli by Weigle reactivation requires functional recA+ and umuD+C+ genes. When the cells were UV irradiated, the groE heat shock gene products, GroES and GroEL, were needed for at least 50% of the Weigle reactivation of the single-stranded DNA phage S13. Because of repression of the umuDC and recA genes, Weigle reactivation is normally blocked by the lexA3(Ind-) mutation (which creates a noncleavable LexA protein), but it was restored by a combination of a high-copy-number umuD+C+ plasmid and a UV dose that increases groE expression. Maximal reactivation was achieved by elevated amounts of the Umu proteins, which was accomplished in part by UV-induced expression of the groE genes. By increasing the number of copies of the umuD+C+ genes, up to 50% of the normal amount of reactivation of S13 was achieved in an unirradiated recA+ host.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.