Abstract

It is shown that a correlation inequality of statistical mechanics can be applied to linear low-density parity-check codes. Thanks to this tool we prove that, under a natural assumption, the exponential growth rate of regular low-density parity-check (LDPC) codes, can be computed exactly by iterative methods, at least on the interval where it is a concave function of the relative weight of code words. Then, considering communication over a binary input additive white Gaussian noise channel with a Poisson LDPC code we prove that, under a natural assumption, part of the GEXIT curve (associated to MAP decoding) can also be computed exactly by the belief propagation algorithm. The correlation inequality yields a sharp lower bound on the GEXIT curve. We also make an extension of the interpolation techniques that have recently led to rigorous results in spin glass theory and in the SAT problem

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.