Abstract

Grid-connected power converters with synthetic inertia have been experiencing a fast development in recent years. This technology is promising in renewable power generation since it contributes to the grid frequency stabilization, like how a synchronous machine does in a traditional power system. This paper proposes optional active power control strategies for grid-connected power converters to let them have inertial response during big load changes and grid contingencies. By giving mathematical expressions, the control parameters are clearly related to the power loop dynamics, which guides the control parameter tuning. The local stability is also investigated. A preliminary simulated and experimental verification is given to support the control strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.