Abstract

Abstract. The ionosphere is a dynamic system with complex structures. With the development of abundant global navigation satellite systems, the ionospheric electron density in different altitudes and its time variations can be obtained by ionospheric tomography technique using GNSS observations collected by the continuously operating GNSS tracking stations distributed over globe. However, it is difficult to represent and analyze global and local ionospheric electron density variations in three-dimensional (3D) space due to its complex structures. In this paper, we introduce a grid-based system to overcome this constraint. First, we give the principles, algorithms and procedures of GNSS-based ionospheric tomography technique. Then, the earth system spatial grid (ESSG) based on the spheroid degenerated octree grid (SDOG) is introduced in detail. Finally, more than 400 continuously operating GNSS receivers from the International GNSS Service are utilized to realize global ionospheric tomography, and then the ESSG is used to organize and express the tomography results in 4D, including 3 spatial dimensions and time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.