Abstract

This paper presented a grid-based hexahedral element mesh generation algorithm for solid models with concave curved boundary lines. A deep study was focused on the boundary matching and quality improvement techniques. Firstly, a method for computing the curvature values of the triangle facets and sub-surfaces was proposed. In order to improve the surface mesh quality, a layer of new elements was inserted on the surface of the jagged core mesh. Then, a relative position relationship method was used to match C-edges of the solid model. Eight different types of free quadrilateral facet configurations were established. In order to handle the concave curve-matching problem, this paper proposed a method to modify the matching properties of the degenerate quadrilateral facets fitted on the same concave curved boundary line by unifying their orientations to point to the same sub-surface. In addition, six mixed templates were newly proposed to improve the geometrical topology of the degenerate elements associated with concave curves and sharp features. The positions of the nodes were smoothed by the modified Laplacian method and objective function. Finally, the effectiveness and reliability of the algorithms proposed in this paper were demonstrated by a practical example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.