Abstract
ObjectiveHyperthyroidism is frequently associated with pronounced neuropsychiatric symptoms such as impulsiveness, irritability, poor concentration, and memory impairments. Functional neuroimaging has revealed changes in cerebral metabolism in hyperthyroidism, but regional changes in cortical morphology associated with specific neurological deficits have not been studied so far. To investigate the pathophysiology underlying hyperthyroid-associated neural dysfunction, we compared grey matter volume (GMV) between adult hyperthyroid patients and matched healthy controls using voxel-based morphometry (VBM). Materials and methodsHigh resolution 3D T1-weighted images were acquired by 3T MRI from 51 hyperthyroid patients and 51 controls. VBM analysis was performed using SPM8. Correlations between regional GMV and both serum free thyroid hormone (TH) concentrations and disease duration were assessed by multiple regression analysis. ResultsCompared to controls, GM volumes in the bilateral hippocampus, parahippocampal gyrus, calcarine, lingual gyrus, and left temporal pole were lower and bilateral supplementary motor area GMV higher in hyperthyroid patients. Serum free triiodothyronine (FT3) concentration was negatively correlated with the normalized regional volume (NRV) of the left parahippocampal gyrus and serum free thyroxine (FT4) concentration negatively correlated with the NRV of the left hippocampus and right parahippocampal gyrus. Disease duration was negatively correlated with the NRV of the left hippocampus, bilateral parahippocampal gyrus, and left temporal pole. ConclusionHyperthyroid patients exhibited reduced GMV in regions associated with memory, attention, emotion, vision, and motor planning. Negative correlations between GMV and both free TH and disease duration suggest that chronic TH elevation induces abnormalities in the adult cortex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.