Abstract
The production of chemicals from biomass has received significant attention due to its potential to reduce greenhouse gas (GHG) emissions. In this work, we develop a systematic framework to quantitatively analyze the mitigation potential of 25 large-volume and promising platform biochemicals. To properly account for the energy requirements of producing different biochemicals, we construct material and energy balances of the biorefinery and develop simulation and optimization models to calculate the energy needed to separate and purify these biochemicals. We show that biomass-based production can lead to significant GHG mitigation. Notably, 24 out of the 25 biochemicals have lower GHG emissions compared to their fossil-fuel-derived counterparts. Under the most conservative assumptions (i.e., 25% conversion and high separation energy), biochemicals can reduce GHG emissions by up to 88%. Under the most optimistic assumptions (i.e., 75% conversion and easy separation), the emission reductions can be as great as 94%. Finally, we discuss constraints on the fraction of chemicals that can be replaced due to biomass availability limitations and identify molecular characteristics that can be used for the prioritization of chemicals to be produced from biomass.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.