Abstract

In Canada, each province has its own electric utility system, and each system is responsible for meeting the demand of its customer base. Electricity demand in all provinces is highly variable throughout the day, as well as during the year. In order to achieve a good match between electricity demand and generation, a mix of base, intermediate and peaking load power plants is used, which uses different fuel sources. When a renewable energy technology or an energy efficiency measure that results in electricity savings is implemented on a regional, provincial and national scale, the electricity savings reflect in the peak (marginal) electricity generation. Thus, the greenhouse gas (GHG) emission reduction due to the reduction in electricity generation corresponds to the fuel used to generate the electricity at the margin. In Canada, the fuel used for marginal electricity generation varies from province to province and from hour to hour. To estimate the reduction in GHG emissions due to reducing electricity generation at the margin, it is necessary to have information on the fuel mix used to generate the marginal electricity for each province on a suitable time scale. With such information, it is possible to estimate a marginal GHG emission intensity factor for each province, which would provide the amount of GHG emissions produced as result of producing 1 kWh of electricity on the margin. However, such information is regarded confidential by most electric utilities and is not made public. In this paper, methodologies are presented to estimate the GHG intensity factors (GHGIFs) for marginal electricity generation for each province of Canada based on the information available in the public domain. The GHGIFs developed for each province are also presented, which are expected to be valid within the next 5-year horizon. Copyright © 2010 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.