Abstract
Synthetic fertilizers make up a significant fraction of the energy required to grow switchgrass (Panicum virgatum L.) for ethanol production. A field study compared biosolids and synthetic fertilizers on biomass yield, ethanol production, and nitrous oxide (N2 O) emissions of switchgrass to determine if using an alternative source of nutrient would lower the energy density of the fuel. Minimal N2 O emissions were observed the first year of the study (0.99±1.5g N2 O ha-1 d-1 for biosolids), with no difference between treatments. Biosolids were added in excess of agronomic rates, and gas samples were collected immediately after irrigation for the subsequent years to examine maximum N2 O emissions. Mean Year 2 emissions increased for fertilizers to 1.8±8g N2 O ha-1 d-1 (n=131) and to 3.73±10.2g N2 O ha-1 d-1 (n=130) for biosolids-amended soils. Emissions in Year 3 were similar to Year 2. Yield was similar and ranged from 3.7±5 to 11±1.1 and from 5.0 ± 0.2 to 13.4 ± 1.7 Mg ha-1 for biosolids and fertilizer, respectively. The potential ethanol yield was 365 ± 28 L Mg-1 and 374 ± 34 L Mg-1 for the biosolids- and fertilizer-grown grass, respectively. Greenhouse gas emissions associated with fertilizer production were considered for N, P, and K and totaled 1,653kg carbon dioxide equivalent (CO2 e) ha-1 . The equivalent credits for substitution of biosolids (18 Mg ha-1 ) were -2,492kg CO2 e ha-1 . Nitrous oxide emissions were calculated based on 1% of total N applied for agronomic applications and were 8,600 and 3,500g N2 O ha-1 for the biosolids and fertilizer treatments, respectively. Total carbon costs associated with fertilization were 2,700kg CO2 e ha-1 for fertilizer and 60kg CO2 e ha-1 for biosolids. Using measured N2 O data would have resulted in lower emissions for both treatments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.