Abstract

The agricultural sector is currently facing many global challenges, such as climate change, and environmental problems such as the release of pesticides and fertilizers, which will be exacerbated in the face of population growth and food shortages. Therefore, the need to change traditional farming methods and replace them with new technologies is essential, and the application of nanotechnology, especially green technology offers considerable promise in alleviating these problems. Nanotechnology has led to changes and advances in many technologies and has the potential to transform various fields of the agricultural sector, including biosensors, pesticides, fertilizers, food packaging and other areas of the agricultural industry. Due to their unique properties, nanomaterials are considered as suitable carriers for stabilizing fertilizers and pesticides, as well as facilitating controlled nutrient transfer and increasing crop protection. The production of nanoparticles by physical and chemical methods requires the use of hazardous materials, advanced equipment, and has a negative impact on the environment. Thus, over the last decade, research activities in the context of nanotechnology have shifted towards environmentally friendly and economically viable ‘green’ synthesis to support the increasing use of nanoparticles in various industries. Green synthesis, as part of bio-inspired protocols, provides reliable and sustainable methods for the biosynthesis of nanoparticles by a wide range of microorganisms rather than current synthetic processes. Therefore, this field is developing rapidly and new methods in this field are constantly being invented to improve the properties of nanoparticles. In this review, we consider the latest advances and innovations in the production of metal nanoparticles using green synthesis by different groups of microorganisms and the application of these nanoparticles in various agricultural sectors to achieve food security, improve crop production and reduce the use of pesticides. In addition, the mechanism of synthesis of metal nanoparticles by different microorganisms and their advantages and disadvantages compared to other common methods are presented.

Highlights

  • Nanoparticles play a key role in most technologies, including medicine, cosmetics, agriculture and the food sciences [1]

  • Biosynthesis of metal nanoparticles (MtNPs) by microalgea and their application in agriculture Microalgae, single-celled prokaryotic or eukaryotic predominantly aquatic microorganisms that undertake photosynthesis form colonies without any cell differentiation and can grow in a variety of environments, such as freshwater, saline, and sea, where their growth is directly related to temperature, light intensity, and nutrient concentration [152]

  • A variety of microorganisms and plant extracts can be used for the efficient biosynthesis of MtNPs

Read more

Summary

Introduction

Nanoparticles play a key role in most technologies, including medicine, cosmetics, agriculture and the food sciences [1]. In particular it offers a rapid, cost-effective, clean, non-toxic and environmentally friendly method for the synthesis of MtNPs with a wide range of sizes, shapes, compositions and physicochemical properties [16, 17].

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.