Abstract

Removal of irrecoverable foulants, which cannot be removed by conventional chemical cleaning, from end-of-life (EOL) membranes remains a substantial challenge due to the strong interaction between the foulants and membrane matrix. Herein, we developed a green solvent cleaning strategy based on Hansen solubility parameters to achieve the removal of irrecoverable foulants from the EOL polyvinylidene fluoride (PVDF) membranes serving for 6 years in a large-scale membrane bioreactor (MBR). We selected methyl-5-(dimethylamino)-2-methyl-5-oxopentanoate (MDMO) as the green solvent due to its strong interaction with the PVDF material, which might enable the substitution of binding sites of irrecoverable foulants. After the MDMO cleaning, the water permeance of the EOL membrane recovered from 47.6 ± 4.7 to 390.9 ± 8.2 L m-2 h-1 bar-1 (with a flux recovery ratio of ∼100%), with its rejection ability and stability maintained. The main components of irrecoverable fouling were humic acid-like substances revealed by spectroscopic characterization. Molecular dynamic simulation further elucidated the cleaning mechanisms: the strong interaction of MDMO-PVDF enabled substitution of binding sites of irrecoverable foulants by MDMO, followed by desorption of the irrecoverable foulants from PVDF and diffusion of the irrecoverable foulants into the bulk phase of MDMO. Evaluation in a lab-scale MBR treating real municipal wastewater verified the reusability of green solvent cleaned-EOL membranes. This study provides a novel, effective, and green cleaning strategy to remove irrecoverable foulants and prolong the service life of membranes in MBRs, facilitating sustainable wastewater treatment using membrane-based processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.