Abstract

Silymarin extracted from milk thistle seeds, is used for treating hepatic diseases. Silybin and isosilybin are its main components, and synthesized from coupling of taxifolin and coniferyl alcohol. Here, the biosynthetic pathways of taxifolin and coniferyl alcohol were reconstructed in Saccharomyces cerevisiae for the first time. To alleviate substantial burden caused by a great deal of genetic manipulation, expression of the enzymes (e.g. ZWF1, TYR1 and ARO8) playing multiple roles in the relevant biosynthetic pathways was selectively optimized. The strain YT1035 overexpressing seven heterologous enzymes and five native enzymes and the strain YC1053 overexpressing seven heterologous enzymes and four native enzymes, respectively produce 336.8 mg/L taxifolin and 201.1 mg/L coniferyl alcohol. Silybin and isosilybin are synthesized from taxifolin and coniferyl alcohol under catalysis of APX1t (the truncated milk thistle peroxidase), with a yield of 62.5%. This study demonstrates an approach for producing silybin and isosilybin from glucose for the first time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.