Biodiesel is a widely recognized and favored liquid biofuel, primarily attributed to its biodegradability and non-toxicity. However, the development of biodiesel is hindered by its high production costs. Here, we developed a method that combines glycerol esterification and transesterification reaction catalyzed using nano-hydrated CaO for the green production of biodiesel from high acid value oil. Waste eggshell was chosen as the calcium source to examine the effect of hydration temperature and duration. The catalysts were optimized using a synthesis process involving under calcination for 3 h at 875 °C, followed by hydration at 60 °C for 6 h and subsequent dehydration at 725 °C. The catalyst loading, alcohol-to-oil mass ratio, reaction temperature, and duration were optimized to 2.5 wt%, 35%, 60 °C, and 2 h, respectively. Under the optimized conditions, the yield of fatty acid methyl ester reached 94.44%. The catalyst was successfully reused eight cycles while maintaining a yield of fatty acid methyl ester at 80.52%. In addition, a comprehensive overview was summarized to compare the catalyst preparation methods, reaction conditions, biodiesel yield, and reusability in the production of biodiesel using eggshell-derived CaO.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call