Abstract

Hydrogen is a kind of energy source with a characteristic of high calorific value and plasma is regarded as a good method of hydrogen production. Hydrogen produced from ethanol reforming using micro plasma can be utilized for portable applications. The study introduces water/carbon ratio, residence time, and ethanol mass flow rate as the parameters of experimental conditions, and makes ethanol conversion, gas production rate, gas product selectivity, energy consumption, and efficiency of hydrogen production per unit as the evaluation parameters of ethanol reforming reaction. The experimental results showed that (1) in the argon micro plasma: the maximum ethanol conversion of 25.3% was obtained at residence time = 2.1 ms, ethanol mass flow rate = 0.01 g/s and S/C = 1.0, and the peak value of hydrogen production of 18.7 μmol/s was achieved at residence time = 2.1 ms, ethanol mass flow rate = 0.05 g/s and S/C = 1.0; (2) in the air micro plasma: the maximum ethanol conversion of 37.4% was obtained at residence time = 2.1 ms, ethanol mass flow rate = 0.01 g/s and S/C = 1.0, and the peak value of hydrogen production of 36.8 μmol/s was achieved at residence time = 2.1 ms, ethanol mass flow rate = 0.03 g/s and S/C = 3.0. These experimental results showed that the microreactor can substantially reduce the volume of the device while producing a large amount of output.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.