Abstract

Recently, green reduction of graphene oxide (GRO) using various natural materials, including plant extracts, has drawn significant attention among the scientific community. These methods are sustainable, low cost, and are more environmentally friendly than other standard methods of reduction. Herein, we report a facile and eco-friendly method for the bioreduction of GRO using Salvadora persica L. (S. persica L.) roots (miswak) extract as a bioreductant. The as-prepared highly reduced graphene oxide (SP-HRG) was characterized using powder X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photoelectron (XPS) spectroscopy, and transmission electron microscopy (TEM). Various results have confirmed that the biomolecules present in the root extract of miswak not only act as a bioreductant but also functionalize the surface of SP-HRG by acting as a capping ligand to stabilize it in water and other solvents. The dispersion quality of SP-HRG in deionized water was investigated in detail by preparing different samples of SP-HRG with increasing concentration of root extract. Furthermore, the dispersibility of SP-HRG was also compared with chemically reduced graphene oxide (CRG). The developed eco-friendly method for the reduction of GRO could provide a better substitute for a large-scale production of dispersant-free graphene and graphene-based materials for various applications in both technological and biological fields such as electronics, nanomedicine, and bionic materials.

Highlights

  • Among various carbonaceous materials, graphene has attracted tremendous attention of scientists and technologists, due to its stable 2D morphology and exceptional electronic properties related to its crystal structure [1,2,3]

  • Upon completion of reduction process, the brown color of graphene oxide (GRO) dispersion changed to dark black, which indicated the formation of Salvadora persica (SP)-highly reduced graphene oxide (HRG)

  • The dispersion quality of the asprepared samples of SP-HRG was compared with chemically reduced GRO (CRG) using hydrazine as a reducing agent

Read more

Summary

Introduction

Graphene has attracted tremendous attention of scientists and technologists, due to its stable 2D morphology and exceptional electronic properties related to its crystal structure [1,2,3]. Graphene is obtained from graphite [12], which is a naturally occurring material and has been in use for centuries [13]. The free-standing single-layer of graphene was first obtained in 2004 by the isolation of graphene from graphite via micromechanical cleavage [14]. This fascinating approach of peeling off graphene layers from graphite can only be useful for fundamental science, and is not suitable for the large-scale production of graphene [15]. Tremendous attention is being paid to explore various alternative approaches for the low-cost and bulk production of graphene

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.