Abstract

The feasibility of replacing toxic chlorobenzene antisolvents with environmentally friendly anisole in the fabrication of planar triple-cation perovskite solar cells was explored here. The successful integration of anisole not only ensures comparable device performance but also contributes to the development of more sustainable and green fabrication processes for next-generation photovoltaic technologies. Nevertheless, to ensure the possibility of achieving well-functioning unencapsulated devices whose working operation depends on outdoor atmospheric conditions, we found that adjusting the cesium concentrations in the perovskite layers enabled the electrical characterization of efficient devices even under high relative humidity conditions (more than 40%). We found that 10% of CsI in the precursor solution will make devices with low hysteresis indexes and sustained performance stability over a 90-day period both with cholorobenzene and anisole antisolvent. These results further confirm that green anisole can replace chlorobenzene as an antisolvent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.