Abstract

Semiconductor quantum dots (QDs) are fluorescent nanocrystals with great potential for use in biomedical and environmental applications. However, eliminating the potential cytotoxicity of the QDs comprised of a core containing heavy metals and using a green chemical process are still challenges faced by the research community. Thus, the aim of this work was to develop a novel green and facile route for synthesizing biocompatible water-soluble QDs using chemically modified chitosan as a capping ligand in aqueous media, with their chemical and optical properties tuned by the nanoparticle size. The synthesis of ZnS QDs capped by carboxymethylchitosan (CMC) was performed using a single-step aqueous colloidal process at room temperature. The nanohybrids were extensively characterized by several imaging and spectroscopic techniques, and the results demonstrated that ultra-small ZnS nanocrystals were produced with average nanoparticles ranging from 3.2 to 4.2 nm. In addition, the luminescent properties of ZnS QDs were influenced by the pH during the synthesis due to the size distribution of the nanoparticles produced. Hence, new “heavy metal free” nanohybrids were successfully developed based on ZnS QDs directly surface-functionalized by biopolymer exhibiting fluorescent activity that may be potentially used in a large number of eco-friendly and biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.