Abstract

Carbon quantum dots (CQDs) due to its high fluorescent output is evolving as novel sensing material and is considered as future building blocks for nano sensing devices. Hence, in this investigation we report microwave assisted preparation and multi sensing application of CQDs. The microwave derived CQDs are characterized by Dynamic Light Scattering (DLS) experiment and Fourier Infrared spectra (FTIR) to investigate the size distribution and chemical purity respectively. Fluorescent emission spectra recorded at varying pH shows varying fluorescence emission intensities. Further, emission spectra recorded at different temperatures shows that fluorescence emission of CQDs greatly depends on temperature. Therefore, we demonstrate the pH and temperature sensing characteristics of CQDs by fluorescence quenching behaviour. In addition, the interaction and sensing behaviour of CQDs for dopamine is also presented in this work with a detection limit of 0.2mM. The steady state and time-resolved methods have been employed in fluorescence quenching methods for sensing dopamine through CQDs at room temperature. The bimolecular quenching rate constants for different concentration have been measured. The interaction between CQDs and dopamine indicates fluorescence quenching method is an elegant process for detecting dopamine through CQDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.