Abstract
We discuss the problem of sparse representation of domains in ℝd. We demonstrate how the recently developed general theory of greedy approximation in Banach spaces can be used in this problem. The use of greedy approximation has two important advantages: (1) it works for an arbitrary dictionary of sets used for sparse representation and (2) the method of approximation does not depend on smoothness properties of the domains and automatically provides a near optimal rate of approximation for domains with different smoothness properties. We also give some lower estimates of the approximation error and discuss a specific greedy algorithm for approximation of convex domains in ℝ2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Steklov Institute of Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.