Abstract

Aimed at the growing interest in printed batteries, widely used industrial gravure printing was recently proven to be able to produce high-quality electrodes for lithium-ion batteries (LiBs), demonstrating its utility in the study of new functional materials. Here, for the first time, gravure printing was investigated for the mass production of well-known low-cost graphite-based anodes for LiBs. Graphite was also chosen as a case study to explore the influence of process parameters on the layer microstructure and the performance of the printed anodes. In particular, upon decreasing the size of the active material nanoparticles through ball-milling, an enhancement in anode performance was observed, which is related to an improvement in the material distribution in the printed layer, even in the case of increasing mass loading through a multilayer approach. A further improvement in performance, close to the theoretical capacity, was possible by changing the ink parameters, obtaining a denser microstructure of the printed anode. Such good results further demonstrate the possibility of using gravure printing for the mass production of electrodes for printed batteries and, in general, components in the field of energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.