Abstract
To describe a massive graviton in 4D Minkowski space-time one introduces a quadratic term in the Lagrangian. This term, however, can lead to a readjustment or instability of the background instead of describing a massive graviton on flat space. We show that for all local 4D Lorentz-invariant mass terms Minkowski space is unstable. The instability can develop in a time scale that is many orders of magnitude shorter than the inverse graviton mass. We start with the Pauli-Fierz (PF) term that is the only local mass term with no ghosts in the linearized approximation. We show that nonlinear completions of the PF Lagrangian give rise to instability of Minkowski space. We continue with the mass terms that are not of a PF type. Although these models are known to have ghosts in the linearized approximations, nonlinear interactions can lead to background change in which the ghosts are eliminated. In the latter case, however, the graviton perturbations on the new background are not massive. We argue that a consistent theory of a massive graviton on flat space can be formulated in theories with extra dimensions. They require an infinite number of fields or nonlocal description from a 4D point of view.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.