Abstract

We demonstrate analytically and numerically that “optimized partial dressing” (OPD) thermal mass resummation, which uses gap equation solutions inserted into the tadpole, efficiently tames finite-temperature perturbation theory calculations of the effective thermal potential, without necessitating use of the high-temperature approximation. An analytical estimate of the scale dependence for OPD resummation, standard Parwani resummation (Daisy resummation), and dimensional reduction shows that OPD has similar scale dependence to dimensional reduction, greatly improving Parwani resummation. We also elucidate how to construct and solve the gap equation for realistic numerical calculations, and demonstrate OPD’s improved accuracy for a toy scalar model. OPD’s improved accuracy is most physically significant when the high-temperature approximation breaks down, rendering dimensional reduction unusable and Parwani resummation highly inaccurate, with the latter underestimating the maximal gravitational wave amplitude for the model by 2 orders of magnitude compared to OPD. Our work highlights the need to bring theoretical uncertainties under control even when analyzing broad features of a model. Given the simplicity of the OPD compared to two-loop dimensional reduction, as well as the ease with which this scheme handles departures from the high-temperature expansion, we argue this scheme has great potential in analyzing the parameter space of realistic beyond the Standard Model models. Published by the American Physical Society 2024

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.