Abstract
We produce gravitational waveforms for nonspinning compact binaries undergoing a quasicircular inspiral. Our approach is based on a two-timescale expansion of the Einstein equations in second-order self-force theory, which allows first-principles waveform production in tens of milliseconds. Although the approach is designed for extreme mass ratios, our waveforms agree remarkably well with those from full numerical relativity, even for comparable-mass systems. Our results will be invaluable in accurately modeling extreme-mass-ratio inspirals for the LISA mission and intermediate-mass-ratio systems currently being observed by the LIGO-Virgo-KAGRA Collaboration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.