Abstract

Gravitational wave emission is considered to be the driving force for the evolution of short-period cataclysmic binary stars, making them a potential test for the validity of General Relativity. In spite of continuous refinements of the physical description, a 10% mismatch exists between the theoretical minimum period ($P_{\rm turn} \simeq 70$ min) and the short-period cut-off ($P_{\rm min} \simeq 80$ min) observed in the period distribution for cataclysmic variable binaries. A possible explanation for this mismatch was associated with the use of the Roche model. We here present a systematic comparison between self-consistent, numerically constructed sequences of hydrostatic models of binary stars and Roche models of semi-detached binaries. On the basis of our approach, we also derive a value for the minimum period of cataclysmic variable binaries. The results obtained through the comparison indicate that the Roche model is indeed very good, with deviations from the numerical solution which are of a few percent at most. Our results therefore suggest that additional sources of angular momentum loss or alternative explanations need to be considered in order to justify the mismatch.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.