Abstract

Gravitational-wave astronomy has the potential to substantially advance our knowledge of the cosmos, from the most powerful astrophysical engines to the initial stages of our universe. Gravitational waves also carry information about the nature of black holes. Here we investigate the potential of gravitational-wave detectors to test a proposal by Bekenstein and Mukhanov that the area of black hole horizons is quantized in units of the Planck area. Our results indicate that this quantization could have a potentially observable effect on the classical gravitational wave signals received by detectors. In particular, we find distorted gravitational-wave “echoes” in the post-merger waveform describing the inspiral and merger of two black holes. These echoes have a specific frequency content that is characteristic of black hole horizon area quantization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.