Abstract

We analyze the Wheeler–DeWitt (WDW) equation in the context of a gravitational collapse. The physics of an expanding/collapsing universe and many details of a collapsing star can classically be described by the Robertson–Walker metric in which the WDW equation takes the form of a times-less Schrödinger equation. We set up the corresponding WDW potential for the collapse and study the solutions of the wave function. The results show that the central singularity appearing in classical general relativity is avoided, the density is quantized in terms of the Planck density and the expectation value of the scale factor exhibits a discrete behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.