Abstract

We utilize a recent formulation of a spherically symmetric spacetime endowed with a general decomposition of the energy-momentum tensor [Phys. Rev. D 75, 024031 (2007)] to derive equations governing spherically symmetric distributions of electromagnetic matter. We show the system reduces to the Reissner-Nordstrom spacetime in general, spherically symmetric coordinates in the vacuum limit. Furthermore, we show reduction to the charged Vaidya spacetime in non-null coordinates when certain equations of states are chosen. A model of gravitational collapse is discussed whereby a charged fluid resides within a boundary of finite radial extent on the initial hypersurface, and is allowed to radiate charged particles. Our formalism allows for the discussion of all regions in this model without the need for complicated matching schemes at the interfaces between successive regions. As further examples we consider the collapse of a thin shell of charged matter onto a Reissner-Nordstrom black hole. Finally, we reduce the entire system of equations to the static case such that we have the equations for hydrostatic equilibrium of a charged fluid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.