Abstract

The coupling of baryonic current to the derivative of the curvature scalar, R, inherent to gravitational baryogenesis (GBG), leads to a fourth-order differential equation of motion for R instead of the algebraic one of general relativity (GR). The fourth-order differential equation is generically unstable. We consider a possible mechanism of stabilization of GBG by the modification of gravity, introducing an R2 term into the canonical action of GR. It is shown that this mechanism allows for the stabilization of GBG with bosonic and fermionic baryon currents. We establish the region of the model parameters leading to the stabilization of R. Still, the standard cosmology would be noticeably modified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.