Abstract
N-doped biochar (AL-N/BC) prepared by pyrolyzing lignin in various temperatures manifested superefficient performance for uranium (U) recycling from nuclear wastewater. The optimist AL-N/BC-700 showed higher adsorption capacity of 25,000 mg/g and faster kinetics of 4100 g·min−1·mg−1 than the most of reported adsorbents, and excellent adsorption-desorption capability (adsorption rate > 90 % and desorption rate > 70 % after 12 cycles). Moreover, the high applicability of AL-N/BC-700 was verified by its superefficient U(VI) adsorption performance in a broad working pH range, various water matrices, and high irradiation stability. Furthermore, the adsorption mechanism discloses the significant role of graphitic N, rather than pyridinic N or pyrrolic N, for U(VI) adsorption. Overall, this work not only presents an applicable approach to alleviate the increasingly serious energy crisis via recycling U(VI) from nuclear wastewater, but also enriches the method of synthesizing N-doped materials for U(VI) adsorption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.