Abstract
The oxygen reduction reaction (ORR) is an extremely important reaction in many renewable energy-related devices. The sluggish kinetics of the ORR limits the development of many fuel cells. Design and synthesis of highly efficient nonprecious electrocatalysts are of vital importance for electrochemical reduction of oxygen. Herein, we develop a graphitic carbon nitride (g-C3N4)-derived bamboo-like carbon nanotubes/carbon-wrapped Co nanoparticles (BCNT/Co) electrocatalyst by a simple high-temperature pyrolysis and acid-leaching method. The catalytic performance of the as-designed electrocatalyst toward ORR outperforms the commercial Pt/C catalyst in alkaline solution. The onset potential of nonprecious BCNT/Co-800 catalyst was 1.12 V. The half-wave potential was 0.881 V. The result was superior to that of commercial Pt/C (0.827 V vs RHE). The Co nanoparticles, bamboo-like carbon nanotubes, defects, and Co-Nx active sites all result in the remarkable ORR activity, stability, and great methanol tolerance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.