Abstract

As a metal-free semiconductor material, graphitic carbon nitride (C3N4), the high recombination rate of photogenerated charges and insufficient sunlight absorption limit its solar-based photocatalytic activity. Here, we reported the heterojunctions of C3N4–Cu2O with a p–n junction structure, which was synthesized by a hydrothermal method. The HR-TEM result revealed an intimate interface between C3N4 and Cu2O in the heterojunction, and UV–vis diffuse reflection spectra showed their extended spectral response in the visible region compared with pure C3N4. These excellent structural and spectral properties, as well as p–n junction structures, endowed the C3N4–Cu2O heterojunctions with enhanced photocatalytic activities. The possible photocatalytic mechanism that photogenerated holes as the mainly oxidant species in photocatalysis was proposed base on the trapping experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.