Abstract

There seems to be a clear consensus that graphical interfaces provide an opportunity to integrate data from complex process in a way that can greatly enhance the problem solving ability of human operators in the future. However, this consensus is maske by a proliferation of terms to express this position in the basic and applied research literatures (e.g., “integrality,” “configurality,” “proximity-compatibility,” “visual momentum,” “direct manipulation,” and “ecological interface”). While the subtle nuances that distinguish among these terms are of academic interest, designers have greater concern for the general principles that might be gleaned from across the subtle distinctions. Base on a thorough review of the basic and applied literature (Bennett & Flach, In press), we argue that there is one basic characteristic of graphical representations that is critical for supporting problem solving. A good graphical display is one whose geometric (space/time) constraints reflect the functional constraints in the proess being represented. In this presentation, we will demonstrate what we mean by a “functional constraint” in a process and a “geometric constraint” in a display. We will demonstrate alternative mappings from “functional constraints” to “geometric constraints.” We will also discuss the implications of these mappings for the type of processing (cognitive versus perceptual) required of the human operator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.